Vaizdų seka iš Saulės dinaminės observatorijos 171 angstreme Veneros tranzito metu, sujungta, kad parodytų Veneros kelią per saulę. Autoriai: NASA/SDO
Planetos atmosfera paaiškina situacijos sunkumą.
Venus
” data-gt-translate-attributes=”[{” attribute=””>Venus, Earth’s sister planet, would likely not rotate, if not for its soupy, fast-moving atmosphere. Instead, Venus would be fixed in place, always facing the sun the way the same side of the moon always faces Earth.
The gravity of a large object in space can keep a smaller object from spinning, a phenomenon called tidal locking (also known as gravitational locking and captured rotation). Because it prevents this locking, a University of California, Riverside (UCR) astrophysicist argues the atmosphere needs to be a more prominent factor in studies of Venus as well as other planets.
These arguments, as well as descriptions of Venus as a partially tidally locked planet, were published on April 22, 2022, in the journal Nature Astronomy.
“We think of the atmosphere as a thin, almost separate layer on top of a planet that has minimal interaction with the solid planet,” said Stephen Kane, UCR astrophysicist and lead paper author. “Venus’ powerful atmosphere teaches us that it’s a much more integrated part of the planet that affects absolutely everything, even how fast the planet rotates.”
Venus takes 243 Earth days to rotate one time, but its atmosphere circulates the planet every four days. Extremely fast winds cause the atmosphere to drag along the surface of the planet as it circulates, slowing its rotation while also loosening the grip of the sun’s gravity.
Slow rotation in turn has dramatic consequences for the sweltering Venusian climate, with average temperatures of up to 900 degrees Fahrenheit